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Abstract—Underground imaging of dielectric and conductive 
anomalies performed using ground penetrating radars (GPRs) 
requires expensive wideband systems to increase the resolution. 
The advent of tomographic principles in multi-monostatic GPRs 
dramatically improved the imaging capabilities and suggested 
the possibility of reducing the bandwidth of the probing 
waveform. In this work we propose to extend the tomographic 
principles to the case of below-ground distributed sensing, thus 
taking advantage of the geometric diversity. We show that, by 
using geometric diversity, the frequency content required to 
image below-ground targets is drastically reduced to virtually a 
single monochromatic signal, thus achieving full spectral 
dominance in the waveform design. 

I. INTRODUCTION 
Presently, a prevalent approach to detect, locate, trace and 

image underground objects is by using Ground Penetrating 
Radar [1]-[5]. Depth of penetration is augmented by logging 
data through boreholes. Image resolution is ameliorated by 
using tomographic principles applied to the received data [6]-
[8]. However, all GPR systems need to use short pulses (i.e. 
high frequency bandwidth) to increase the information 
concerning the targets via frequency diversity.  

The use of high bandwidth leads to several issues. First, 
the signal to noise ratio (SNR) decreases with an increase in 
the spectral content of the probing wavefield. Second, the 
electromagnetic spectrum available for military and civil 
applications is continuously being eroded due to the 
tremendous demand of wireless applications. Furthermore, 
unintentional (e.g. broadcasting stations) or intentional (e.g. 
jammers) man-made interferences can reduce the available 
spectrum. If larger bandwidth is required, EMI, EMC and 
intermodulation effects become difficult tasks to be tackled 
and solved. Third, a wideband system can be extremely 
bulky, delicate and expensive. This problem is accentuated 
when the system is designed to work at lower frequencies: it 
is impractical to generate well-designed short pulses in the 

HF frequency range, where antennas are fundamentally 
electrically small. Additionally, the shorter the pulse is, the 
greater is the difficulty and cost in properly sampling the 
received signal. Fourth, the conductivity and dielectric 
permittivity of the ground varies with the frequency: if a 
wideband signal is sent into the ground, frequency dispersion 
is likely to occur, thus broadening the pulse support and 
reducing the achievable resolution. Additional non-bandwidth 
related factors limit the efficiency of common GPRs. For 
example, the resolution in azimuth depends on the 
beamwidth: at HF frequencies it is impractical to create 
pencil beams, therefore azimuth resolution must be reduced 
by using other techniques. Moreover, common GPR suffer 
from the blind region effect in which the receiver is idle until 
the transmitter completes the transmission of the pulse. This 
problem can be solved by invoking suitable modulation 
techniques, at the penalty of increased complexity and cost of 
the system. Finally, when a target is not parallel to the 
surface, Euler’s law suggests that reflected energy is not 
mainly back-propagating to the GPR receiver, and thus its 
detection may be compromised. 

We propose a methodology [9]-[14], named RF 
tomography, that addresses these open issues, and we 
demonstrate how RF tomography may outperform current 
state-of-the-art GPR technology. RF tomography requires a 
set of low-cost penetrable transponders arbitrarily deployed 
above the ground (see Fig. 1). Transmitters send a waveform 
into the ground, scatterers re-irradiate power toward 
receivers, which log data and relay the retrieved information 
to a base station. The novelty of this approach is the use of 
multiple transmitters (i.e. view diversity) and multiple 
receivers (i.e. observation diversity), besides frequency, 
polarization and antenna pattern diversity. The accrual of 
geometric diversity facilitates the waveform frequency 
content reduction, and in the limiting case a set of discrete 
monochromatic signals yield actionable below-ground 
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reconstructed images. In this work we focus on the inversion 
algorithms necessary to process the signals measured by the 
multitude of ground sensors. 
 

 
Figure 1: RF Tomography. Transmitters send power into the ground. 
Receivers collect the scattered field and send this information to the main 
station. 
 

II. FORWARD MODEL 
We describe the forward model of an RF tomographic 

system by considering the 3D geometry depicted in Fig. 2. 
The host medium (i.e. the earth) is modeled as an 
homogeneous medium with relative dielectric permittivity 

Dε  , conductivity Dσ , and magnetic permeability 0μ . The 
targets are assumed to reside in the investigation domain D. 
The sources are N electrically small dipoles (of length tlΔ ) 

or loops (of area tA ) fed with current tI , and located at 

position t
nr  (view diversity). For each transmitting antenna, 

the scattered field SE  is collected by M receivers 
(observation diversity), located at r

mr  points in space. For 

simplicity, a single operating frequency f  is adopted. 
We assume the relative dielectric permittivity profile 

( )'rε r  and the conductivity profile ( )'σ r  inside the 

investigation domain D as unknowns of the problem. 
Accordingly, the inverse problem is recast in terms of the 

unknown permittivity contrast function: 
 

 ( ) ( ) ( )
0

'
' '

2
D

r D j
fδ

σ σ
ε ε ε

π ε
−

= − +
r

r r . (1) 

 
In this way, the wave number inside D can be expressed as: 
 

 
( ) ( ) ( )

( )

2 2
0 0 0

2 2
0

' ' '

'
r

D

k j

k k δ

ω μ ε ε ωμ σ

ε

= +

= +

r r r

r
, (2) 

 

 
0 0 0

0 0 0

/D D Dk j

k

ω μ ε ε μ σ ω

ω μ ε

= +

=
. (3) 

 
The function in (1) accounts for the difference between the 
unknown dielectric permittivity of the object and that of the 
host medium. 

For each point 'r  in region D, the vector wave equation 
holds: 
 

 ( ) ( ) ( )2 2
0' ' 'Dk k δε⎡ ⎤∇×∇× = +⎣ ⎦E r r E r . (4) 

 
The scattered wave in a point D∉r  that is solution of (4) 
can be written in terms of integral equation of the dyadic 
Green’s function: 
 

 ( ) ( ) ( ) ( )2
0 , ' ' ' 'S

D

k dδε= ⋅∫∫∫E r G r r E r r r , (5) 

 
where ( )'E r  is the total field in the investigation domain D, 

given as the superposition of the incident field ( )'IE r  (i.e. 

the field in the investigated area when objects are absent) and 
the field ( )SE r , scattered by the targets. 

As it is well known, the inverse scattering problem in (5) is 
non-linear. Nevertheless, it can be recast to a linear problem 
by means of the Born approximation (BA). Under BA, the 
total field inside the integrand of (5) can be approximated by 
the known incident field [15]-[18], i.e.: 
 

 ( ) ( ) ( ) ( )2
0 , ' ' ' 'S I

D

k dδε≅ ⋅∫∫∫E r G r r E r r r . (6) 

 
Therefore, the inverse problem at hand is cast as the inversion 
of the linear integral equation connecting the permittivity 
contrast function to the scattered field data. 

The use of BA can be justified by considering that: 
• The targets of interest are isolated, limited in number and 

embedded in a lossy medium. Therefore, mutual interaction 
(a phenomenon ignored by BA) between targets can be 
assumed negligible. 

• In general, the inhomogeneities of the soil are electrically 
small, and their conductivity remains low. Therefore, their 
scattered fields are insignificant compared with the RF 
signal re-irradiated by our targets of interest. 

• Our goal is to detect, localize and approximately determine 
the geometry of the targets. Toward this objective it has 
been shown how BA based inversion algorithms are able to 
work with strong scattering objects, provided that no 
quantitative description of the dielectric permittivity in D is 
required. 
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The Green’s function depends upon the geometry that is 
considered (half-space, two-dimensional, full space).  In this 
work, we utilize the three dimensional dyadic Green’s 
function G  for a homogeneous medium with the same 
properties of the earth. This assumption is reasonable because 
the sensors are deployed at the air/ground interface, and the 
frequencies involved are relatively low. Accordingly, we 
have [19]: 
 

 ( )
'

2, '
4 '

Djk

D

e
k π

−⎡ ⎤∇∇= +⎢ ⎥ −⎣ ⎦

r r

G r r I
r r

. (7) 

 
The operator ∇∇  in (7), which is responsible for 

depolarization and is useful for near field sensing, can be 
generally neglected for ' 1Dk − >>r r , i.e. when sensors 

are located in the far zone with respect to targets.  
The incident field, i.e. the field radiated in the 

homogeneous medium from a point source located at position 
t
nr  , is given by: 
 

 ( ) ( ) ˆ', ',I t t t
n n n nQ= ⋅E r r G r r a , (8) 

 
where 0

t tQ j l Iωμ= Δ for an electrically small dipole, or 

0
t tQ j A Iωμ= − for an electrically small loop, ˆ t

na  is the 
(electric or magnetic) dipole moment direction. 
Additionally, the field received by a dipole or loop with 
moment direction ˆ r

ma  positioned at r
mr  due to an equivalent 

(in terms of I
nE )  current distribution defined inside the 

investigation domain D can be expressed as [28]: 
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Substituting (8) in (9) we obtain the scalar forward model of 
RF tomography: 
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From a mathematical point of view, the problem of finding 
the contrast function is to perform the inverse of the linear 
operator L connecting the unknown contrast function and the 
scattered field data. 

 
Figure 2: 3D Geometry for the inversion model. 
 

III. INVERSION PROCEDURES 

A. Tikhonov Regularization 

A way to compute 1−L  is to perform a numerical inversion 
of L  [20]. Let us collect the sampled field data in an ordered 

NM vector ( ){ },S S t r
n mE E= r r , and discretize the domain 

region D in K voxels, each one located at position 'kr : the 
contrast dielectric permittivity can be embodied in a column 
vector ( ){ }'kδ δε ε= r  of length K, and it represents the set 

of unknown parameters. After this discretization, eq. (10) can 
be rewritten in a matrix form: 

 
 SE δε= L , (11) 

 
where L  now is a matrix with dimensions NM K× . 

The problem is then to invert the relation (11). Due to the 
independent set of measurements, L is theoretically full rank, 
but is often severely ill-conditioned. This leads to severe 
artifacts in the reconstruction process, particularly 
exacerbated when noise (thermal, external, quantization) or 
clutter is impinging the receivers.  

A common way to quantify the behavior of L is by 
inspection of its condition number κ . For the operator L  it 
is quite common to obtain typical values of κ  above 610 . 
An efficient method to perform an inverse of a very ill 
conditioned matrix is by using the Tikhonov regularization  
procedure. In this way, the contrast dielectric permittivity can 
be estimated: 
 

 ( ) 1
ˆ H H SEδε β

−
= +L L I L  (12) 
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Where HL denotes the adjoint of L , and β  is the 
regularization parameter in the Tikhonov sense, that needs to 
be appropriately selected. The advantage of this approach is 
its remarkable performance in generating meaningful images, 
even when the number of sensors is limited. Unfortunately, a 
proper choice of β  may be a difficult task, and often it is 
necessary to seek for a constrained optimization solution of 
β  before a meaningful, sharp and low blurred image is 
reconstructed. This implies a (computationally expensive) 
matrix inversion for each attempt may be necessary. 

B. Fourier Approach 
In practical scenarios, where real-time processing is critical, 
or when the relay to a base-station is impeded, it is pivotal to 
derive an inversion strategy that privileges speed vs. 
accuracy. This priority is emphasized by the current system 
technology, which is widely implementing FFT routines to 
accelerate image reconstructions. Therefore, we propose an 
approach that takes advantage of the Fourier relation arising 
between scattered field and object shape, as discussed in 
literature under the topic of diffraction tomography. 

In fact, if targets and sensors are distant enough so that the 
propagating wave is TEM (normally occurring when the 
fields are primarily propagating as 1 / r ), then the forward 
model can be expressed as follows below.  
We define the unit norm direction of propagation vectors as: 

 

 ˆ ˆ ˆ ˆsin cos sin sin cost t t t t t
n n n n n nθ ϕ θ ϕ θ= − − −l x y z , (13) 

 ˆ ˆ ˆ ˆsin cos sin sin cosr r r r r r
m m m m m mθ ϕ θ ϕ θ= + +l x y z . (14) 

 
Using the paraxial approximation, the transmitting Green’s 

function at the generic position 'r  inside region D can be 
simplified as: 
 

 ( ) ( ) ( )ˆexp exp '
, '

4
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≅
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while the receiving Green’s function can be expressed as: 
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Therefore, for a pair of transmitters and receivers, the 
scatteres field can be rewritten as: 
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Eq. (17) is a simplified and continuous version of (10). 

The quantity ( )ˆ ˆt r
D n mk −l l  can be represented by a 3D 

vector:  
 

 ( )ˆ ˆt r
mn D n mk= −k l l . (18) 

 
Eq. (17) can be rewritten as [33]: 
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It is useful to consider a normalized version of (19): 
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This result can be interpreted in the following way: each 
collected sample ( )S

mnE k  returns the value of the mnk  

spectral component of the contrast function ( )'δε r . 

Theoretically, if we have enough samples to fully populate 
the spectral representation of ( )'δε r , the discrete function 

( )S
mnE k  in the limit can be approximated as a continuous 

function ( )SE k , and (20) can be interpreted as a 3D inverse 

Fourier transform of the permittivity contrast function. 
Therefore, we can reconstruct an image of the underground 
by direct Fourier transform eq. (19), i.e.: 
 

 ( ) ( ) ( )ˆ ' exp 'S

K

E j dδε − ⋅= ∫∫∫r k k r k , (21) 

 
where the domain of integration K  is the support of 

( )SE k . By inspection of (18), we conclude that when the 

sensors completely encircle the target, K  is a sphere of 
radius 2 Dk , meaning that the available information of the 
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spectral content of ( )'δε r  is limited up to the spectral 

component 2 Dk . Therefore, the reconstructed image of the 
contrast function will be a low-pass filtered version of the 
true image.  

In the real scenario where a finite number of sensors are 
deployed, three factors affect the resolution (leading to 
blurring and artifacts): the invalidity of paraxial 
approximation, the non-uniform sampling, the sparse data set, 
and the attenuation constant. 

In this work, we consider the attenuation to be negligible, 
so that the wave number in  (21) remains a real quantity, and 
FFT can be applied. 

Paraxial approximation holds when the angle 

maxθ between the ray passing through the origin and the ray 
intersecting the boundary of the region D is negligible. This 
angle can be computed using: 
 

 
( )
( )

1
max '

ˆ ˆ' '
max max tan

ˆ ˆ ˆ'

j j

j D
j j j jr

θ −

∈
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r

r r l l

l r l l
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where j represents any transmitter or receiver. Blur reduction 
is accomplished by segmenting the region D into smaller 
analysis regions (where maxθ remains small within the sub-
region) and by considering an inverse problem (i.e. smaller 
FFT) for each sub-region. Then, the resulting sub-images are 
concatenated to form the final image. 

The non-uniform to uniform grid transformation can be 
accomplished using Tri-Linear interpolation. Let us define a 
uniform grid in the spectral domain of the scattered field 

( ), ,E u v w , where: 

 

, , , ,
, , , ,

, ,
, ,

, , , 1 ,...
2 2

,
2

x y z x y z
x y z x y z

x y z
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N N
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N
k

⎛ ⎞
= − Δ − + Δ⎜ ⎟

⎝ ⎠

Δ

(23) 

 
For the tri-linear interpolation, let us define three intervals in 

the Fourier space: , ,x y zk k kΔ Δ Δ . Let us consider a sample 

point ( ), ,u v w
 
in the uniform grid to be estimated, and a 

non-uniform sample point x y z
mn mn mn mnk k k= + +k  that has 

been measured: we can define an interpolation weighting 
factor as follows: 
 

 ( ) ( ) ( )uvw x y z
mn x mn y mn z mnw h k u h k v h k w= − − −  (24) 

 
where: 
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The total weighting factor is: 
 

 
1 1

N M
uvw uvw
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n m

W w
= =

=∑∑  (26) 

 
The estimated value in ( ), ,u v w  is therefore: 
 

 ( ) ( )
1 1

1, ,
N M

uvw
mn mnuvw

n m
E u v w w E

W = =
= ∑∑ k  (27) 

 
The major advantage of this technique is the intrinsic 
possibility of estimate missing samples when we choose 

, , , ,x y z x y zk kΔ > Δ . In this way, the reconstructed image 
shows fewer artifacts and fewer oscillations. 
A way to recover information from the missing samples on 
the sparse dataset can be accomplished by using the technique 
of Projection on Convex set (POCS). The basic idea of POCS 
is to properly weight the available samples in a way that the 
correspondent point spread function is minimized. The ideal  
point spread function (PSF)  
 

 ( ) ( )
2 2 2

' ' '

2

'
D

jux vy wz
x y z

u v w k

PSF e k k k− + +

+ + ≤

= Δ Δ Δ∑r  (28) 

 
coincides with the impulse response of the RF tomography 
optical system, i.e. has the shape of a 3D Bessel-sinc 
function, and it can be computed numerically by using a 3D 
FFT algorithm so that the PSF is known for any value of 

'r in the region D . For simplicity, let us consider an 
equivalent scaled problem in which , ,u v w∈ and 

1x y zk k kΔ Δ Δ =  
 However, the actual PSF generated by the 

x y zS N N N≤ available samples is: 
 

 ( ) ( )' ' '

1
' s s s

S
j u x v y w z

s
s

PSF p e− + +

=
=∑r  (29) 

 
where the weighting factors sp  are identically equal to unity. 
In principle, by properly weighting the elements in the 
incomplete summation (29), it may be possible that the 
weighted actual PSF is pointwise very similar to the ideal 
PSF: 
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 ( ) ( )', ', ' ', ', 'PSF x y z PSF x y z≅  (30) 

 
In order to achieve this result we invoke the Projection on 
Convex Sets method, which is based on successive 
approximations of the actual PSF until a stopping criterion is 
met. 
In the first iteration, we estimate the point spread function by 
imposing all weights to be 1Sp = . The next step is to 
compare pointwise the computed PSF with the ideal PSF (in 
the Space domain). More exactly, we create a suitable guard 
band region on the ideal PSF. If the values of the actual PSF 
are falling outside the guard region, we force these values to 
be inside the guard region. Once the corrections on the 
computed PSF are done, we perform a 3D IFFT. The Fourier 
transform of the corrected actual PSF is generally a function 
that has values for any , ,u v w  pairs. The next step is to set to 
zero all points in the Fourier domain that represent our 
missing samples. In this way, we are creating a new function 
defined only where actual samples are located.  
We perform a new computation of PSF using the values sp  
previously obtained, and the POCS iteration continues from 
until a stopping criterion is met, e.g. the computed PSF lies 
completely within the guard band region, or the n-th iteration 
of the computed PSF does not improve the approximation of 
the ideal PSF with respect of the n-1th iteration, i.e. the 
process stalls. 
When POCS terminates, the coefficient sp  of the last 
iteration are used for computing the non-uniform inverse 
Fourier transform of the received electric field, as follows: 
 

 ( ) ( ) ( )' ' '

1

ˆ ' , ,s s s
S

j u x v y w z
s s s s

s
p e E u v wδε − + +

=
=∑r  (31) 

 
IV. SIMULATIONS AND RESULTS 

We performed several simulations using the methods 
described above. The geometry is depicted in Fig. 3, the 
probing frequency is 3MHz, and results are shown in Figs. 
4,5,6. Considerations and further examples will be shown at 
the time of the conference. 

 
Figure 3: : Geometry for the simulation (top view). Transmitters are 
represented with “+”, while receivers are represented with “X”. The two 
black lines represent the positions of the tunnels. 

 
Figure 4: reconstructed image using Fourier, no POCS 

 
Figure 5: reconstructed image using Fourier and POCS 

 
Figure 6: reconstructed image using Tikhonov 
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